리모델링에 따른 대형 실내체육관의 음향성능 변화

Variation of Acoustic Performance of Large Gymnasium by Remodeling

한성규, 김재수

Abstract

최근 산업구조의 변화와 생활수준이 향상됨에 따라 다양한 문화행사가 이어져 있을 대형 실내체육관이 많이 건립되고 있다. 국내외 경우 이러한 대형 실내체육관은 체육활동 및 문화공연 행사장으로 사용되고 있으나 건립 초기에는 음향적 고려 없이 설계·시공되어 대형 집회 및 공연시설로는 많은 문제점들이 가지고 있다.

이러한 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 결과와 문제점을 파악하였다. 이에 따라 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

따라서 대형 실내체육관에서 이러한 목적을 수행하기 위해서는 설계단계부터 건물이 완성될 때까지 음향전문가가 참여되어야 하지만 현재 국내에서는 시공된 후 음향적 경감이 심각하게 발생하면 보수공사를 통해 음향학적 결함을 해결하고 있으나 많은 어려움이 있다.

이러한 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 경감과 문제점을 파악하였다. 이렇게 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

이런 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 경감과 문제점을 파악하였다. 이렇게 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

1. 서론

 최근 문화의 발달과 국민들의 의식수준 향상으로 인하여 각종 집회, 경연회 및 각종행사 등은 대형 실내 공간의 필요성이 높아지면서 대형 실내체육관이 많이 건립되었다. 이러한 공간들은 목적이 따라 국장, 응답장, 다목적관, 문화공간으로 사용될 뿐만 아니라 비의 기능적, 문화적, 레저기능이 다중이 공간의 대형화로써 실내음향이 대한 고려가 필수적인 요소로 동등하게 되었다.

따라서 대형 실내체육관에서 이러한 목적을 수행하기 위해서는 설계단계부터 건물이 완성될 때까지 음향전문가가 참여해야하였지만 현재 국내에서는 시공된 후 음향적 경감이 심각하게 발생하면 보수공사를 통해 음향학적 결함을 해결하고 있으나 많은 어려움이 있다.

이러한 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 경감과 문제점을 파악하였다. 이렇게 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

이런 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 경감과 문제점을 파악하였다. 이렇게 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

이런 관점에서 본 연구에서는 음향적 경감이 발생하여 리모델링 전단계에 있는 대형 실내체육관을 대상으로 개선 전 음향성능을 측정한 후 음향적 경감과 문제점을 파악하였다. 이렇게 파악된 자료를 토대로 음향시설설계를 위해 실내 음향설계에 대한 고려가 필수적인 요소로 동등하게 되었다.

2. 대형 실내체육관의 제원

본 연구대상 대형 실내체육관은 폭소 여러가지 체육활동 외에도 콘서트, 국장 등의 공연장으로도 사용되고 있는 대형 실내체육관으로서, 둘 형태로 되어있으며 개선자는 1층은 업식과 좌식으로 나뉘었으며, 2층 전체는 좌식으로 이루어져 있다. 대형 대형 실내체육관의 제원은 표 1과 2와 같다.

3. 건축음향성능 개선사항

개선 전 측정결과 현장적으로 체육관이 이미 완공된 상태에서 비용·기간 등의 측면을 고려하여 가장 효율적인 대안을 마련하는 것이 필요하다. 본 연구대상 대형 실내체육관의 경우 음향성향을 고려하여 개선사항에 대한 개선사항을 제시하고자 한다. 따라서 상황별로 제안사항은 그대로 두고 나머지부분에

정회원, 환경공학과 건축공학과 교수, 공학박사
흡음재를 부착하여 음향특성을 개선하고자 하였다.

4. 건축음향성능 측정

연구대상 대형 실내체육관의 현장측정은 ISO3382에 준하여 실시하였으며, 응용은 ISO에서 제안하는 무지향성 스피커(DO12 : Omni - Directional Speaker)를 무대의 정 중앙에 1.5m 높이로 설치하였다. 이로 하여 각 벽면과 최소 1m 이상 거리가 유리한 범위에 의한 영향이 미치지 않도록 하였다. 다양한 건축음향 파라미터를 측정하기 위해, 그 측정이 관중 0 dB급의 Symphonie하드웨어를 사용하여 음향성능을 측정하였으며, 0dB급의 dBATI 프로그램으로 측정된 자료를 분석하였다. 측정에는 ML5(Maximun-length sequence) 응용을 사용하였으며, SPL은 현장에서 PCM Recorder를 이용하여 녹음 후, dSPACE 프로그램을 통해 분석하였다. 다음 그림 2와 3은 측정기기 구성 및 수용자의 모습이다.

 그림 2 측정기기 구성 및 배설

 그림 3. 대형 실내체육관의 수용중의 위치

5. 분석 및 고찰

5.1. 개선 전·후 건축음향 성능 평가
(1) 임펄스 응답
현장 측정 시 임펄스응답은 소리가 변화하는 임펄스의 함(SUM)으로 공간이 갖는 음향적 특성을 나타낼 수 있는 모든 정보를 가지고 있으며 이 측정 결과로부터 RT, EDT, D50, C50 같은 건축음향의 물리적 평가지수를 산출하여 실내음향 특성 파악 할 수 있다. 개선 전·후 대상 다목적 홀에서 측정된 대표적인 임펄스 응답은 그림 4와 같다.

그림 4. 개선 전·후 대형 실내체육관의 임펄스 응답

위의 그림 4와 같이 개선 전 무지향성 응용(DO12) 을 사용하였을 경우 응용 주위를 제외하고는 삼각곡선이 점점 유효도가 완만하게 감소하고 있어 응용에 대해 적합한 응답을 얻지 못하고 있으며, 이로 인해 Echo와 같은 음향적 결함이 발생하고 있다. 개선 후에는 Echo 현상이 발생하지 않음으로써 개선 전보다 응용의 음질이 향상되었다는 것을 알 수 있다.

5.2. 응답레벨(SPL)
음의 세기를 나타내는 응답레벨은 실의 형태와 내부공간의 구성에 따라 응답레벨의 분포상태는 매우 중요한 의미를 갖는다. 음의 응답레벨은 소리의 밀도과 초기 반응 신호의 양에 따라 결정된다. 대형 실내체육관의 개선 전·후 응답레벨(dB)을 비교한 결과는 다음과 같다.

그림 5. 개선 전·후 실내체육관의 SPL 실험치 비교

그림 5. 개선 전·후 응답레벨(dB) 실험치 비교

그림 5를 보면 개선 전의 응답레벨의 평균값이 75.3dB, 개선 후 응답레벨의 평균이 59.6dB로 개선 전이 약 15.7dB 정도 높게 나타났다. 이는 아감재료의 변형으로 인해 초기반응이 감소함에 따라 삼각곡선이 점점 음의 응답레벨이 향상됨으로서 개선지와 현상이 나타난 것으로 사료하였다.

5.3. 공간시간(RT)
공간시간은 음의 양에 대한 가장 중요한 평가지수이며 경상시간의 음이 60dB 감쇠하는 데까지 소요되는 시간으로 정의된다. 실의 총도와 재적에 따른 대형 대형 실내체육관의 개선 전·후 실험치 비교한 결과는 그림 6과 같다.

그림 6. 개선 전·후 실내체육관의 공간시간 비교

그림 6을 보면 개선 전의 공간시간은 1.3초, 개선 후 공간시간은 1.2초로 개선 전이 약 0.1초 정도 감소하였고, 이는 개선 지방의 음향가치와 음향의 양에 대한 평가지수로 대형 실내체육관의 음향특성을 개선하게 되었다.
그림 6. 개선 전후 실내체육관의 RT 설측치 비교(500Hz)

그림 6을 보면 500Hz에서 개선 전 전항시간의 평균은 7.78로 개선 후 3.65로 나타났다. 이는 개선 전보다 개선 후의 전항시간이 약 41.3% 높아졌다. 이는 또한 수음절별 편차도 개선 전보다 적게 나타나고 있다. 따라서 전항시간의 감소로 인해 음향이 증가했고 명료도가 높아지는 등 개선 전에 비해 내부 음향상태가 향상되었다.

그림 7은 500Hz에 대한 실내체육관의 최적항시간

그림 7을 보면 본 연구의 대상 실내체육관은 설계값이 약 59,000m²로 실용성을 다목적 공간으로 목적으로 하며 최적 설계목표 전항시간은 음향설계 기준주파수 500Hz에서 만족시켜 약 2.02로 나타났다.

(4) 초기감쇠시간(EDT) 전항이 및 다른 주론적 평가지수인 초기감쇠시간은 음향전달 상태에서 음향을 정지시킨 후 10dB 감쇠할 때까지의 시간으로 정의되고, 음향의 강도가 분리된 반사로부터 점차적으로 측정하므로 시위에 따라 달라지는 전항이 및 다른 주론적 지수인 초기감쇠시간이다. 대상 실내체육관의 개선 전후 초기감쇠시간(EDT)을 실측한 결과는 그림 8과 같다.

그림 8은 500Hz에서 개선 전후 초기감쇠시간이 현저히 향상되었는데 이는 음향의 강도가 분리된 반사로부터 가장 긴 시간이 경과되어 삼성성에 대한 민감하게 반응하기 때문으로 평가된다.

(5) 음성명료도(D提升)

최적의 명료도와 관련된 지수 중 강추를 대상으로 하는 D_high은 음의 반응이 중간 후 50ms 이상의 적응도 및 초기반사율과 조기반사율의 비를 Definition 또는 Deutlichkeit로 표현하며, 음성명료도와 직접 관련이 있다. 24개의 수음점에서 50Hz를 대상으로 개선 전후 실측한 음성명료도 D의 표준값은 그림 9와 같다.

그림 9은 개선 전후 실내체육관 D의 설측치 비교(500Hz)

그림 9을 보면 500Hz에서 최적의 평균값이 개선 전 19.18%, 개선 후 32.72%로 약 13.54% 향상됨을 알 수 있다. 이는 개선 후 전항시간이 변화함에 따라 성능내의 음향이 줄어드면서 음향설계가 더해 막대한 음성명료도의 감도 개선 전보다 개선 후 더욱 향상된 것을 알 수 있다.

(6) 음악명료도(Cap)

음악에 대한 명료도 지수(Clarity Index)로의 C는 콘서트 호수 음악에 대한 명료도를 나타내기 위한 지수로 너무 큰 경우 연주음이 너무 전조하고 박적하게 충분한 음향과 음색으로 이를 감상하기 어려워진다. 대상 실내체육관을 대상으로 24개 수음점에서 500Hz를 대상으로 개선 전후 실측치의 음악명료도(C)는 그림 10과 같다.

20) 이국현, 박성처, 김재수 : "공연장 음성적 성능과 음성에 따른 진단적 연구"
관이 값일 -5.73dC (dB) 그림하게 인 평가를 ±13 좌석.

11.5. 좌석번호 10 50 60 90 들을 개선하여 그림을 1를 개선하기 위해 나타낸을 알 수 있다.

(7) 음성전달지수(RASTI)

실내에서 음성 전달의 이례도(Speech Intelligibility)를 나타내는 주관적 척도로써, 대형 실내체육관의 개선 전후 실측은 그림 11과 같다.

그림 10. 개선 전후 실내체육관의 C80 실측치 비교(500Hz)

그림 11. 개선 전후 실내체육관의 RASTI 실측치 비교(500Hz)

그림 12. 리모델링 후 음향성능 개선상태 비교(500Hz)

그림 12. 리모델링 후 음향성능 개선정도를 파악해 보면 개선 전보다 개선 후의 음향성능이 많이 항상된 것을 알 수 있다. 특히 SPL과 RASTI보다는 RT, EDT, Dν, Cο 등이 많이 개선되었다. 특히, 음향성능의 평가가 되는 500Hz에서 SPL는 20%이상, RT는 53%이상, EDT는 63%이상, Dν은 40%이상, Cο은 66%이상, RASTI는 14%이상 항상된 개선정도를 보였다. 따라서 리모델링 후 음향성능은 실내체육관의 기능에 적합하도록 개선되었음을 알 수 있다.

6. 결론

본 연구는 대형 실내체육관을 대상으로 시공이 가능한 마감재료를 보수 가능한 후 현장 측정을 통해 개선 전후를 비교, 분석하여 실내음향성능의 항상 여부를 판단하였으며, 나아가 대형 실내체육관을 리모델링한 후 창건설립을 실시함으로써 대상 공간에 대한 음향 만족도 및 각종 특성에 대한 반응을 조사하고자 하였고, 본 연구를 통해 얻은 결론은 다음과 같다.

1. 리모델링 전 음향성능을 평가해 보면 대형 실내체육관의 특성에 따라 대형 실내체육관리모델링된 후의 활성화를 실현할 수 있음을 나타내었다. 더 또한 본 연구 음향성능 개선이 매우 필 요한 상황이다.

2. 리모델링 후 음향성능을 평가해 보는 500Hz로 기준으로 개선 후 SPL은 75.32dB로 59.56dB로, RT는 7.78초에서 3.65초로 4.13초 차이진 것으로 나타났다. 또한, EDT는 7.69초로 2.84초로, Dν은 19.18%로 33%로, Cο은 -5.73dB에서 -1.95dB로, RASTI는 39.50%로 46%로 개선되어 Fair (노력하면 들어볼 수 있다.)로 나타난 개선 전에 비해 음향성능이 매우 개선되었다.

3. 본 연구 대상 실내체육관은 공식 취득한 경우를 토대로 개선 전후의 음향성을 비교 및 분석하였다. 그러나 리모델링 후 만성적이던 전능시각학은 2.7초로 낮아져 적절연장시간에 근접한 만족한 음향성을 보인 것으로 사료된다. 또한, 다른 음향성능 평가지수들도 반드시 적절건설된 경우로 판단되어 다양한 목적을 수행할 수 있는 실내체육관의 음향성을 확보한 것으로 판단된다.

4. 리모델링 후 음향성능 개선정도를 파악해 보면 개선 전보다 개선 후의 음향성능이 많이 항상된 것을 알 수 있다. 특히 SPL과 RASTI보다는 RT, EDT, Dν, Cο 등이 많이 개선되었으며 음향성능의 평가기준이 되는 500Hz에서 SPL은 20%이상, RT는 53%이상, EDT는 63%이상, Dν은 40%이상, Cο은 66%이상, RASTI는 14%이상 항상된 개선정도를 보였다. 따라서 전장의 마감재료를 변경한 리모델링 후에는 더욱 향상된 음향특성을 갖는 공간으로 변화하였다.

참고문헌
1. 김재수, 건축음향설계, 제3판, 2003.9
2. 김재수, 양만규, 건축음향설계면역, 도서출판 도서, 2001.9