Characteristics and Effect of Hitting Noise Occurring at Golf Exercise Facility

Shin, Jae-Bong* Jung, Chul-Woon* Kim, Chun-Soo** Kim, Jae-Soo***

Abstract

Recently, in accordance with the improvement of people’s cultural level, the seriousness of Noise Pollution is on enlarging as nearly as it occupies the greater part of environmental civil complaint. Especially, on account of the improvement of life quality, as those people who will enjoy Golf are increasing, the Golf Training Facilities are under construction at everywhere in the living circumference. Due to this, since the cases which disturb the delightful life environment of the nearby-resident by the noise occurs when the golf club head hits the golf ball are on increasing, it is becoming a strong object of the environmental dispute. Therefore, this Research has measured the traveling property by frequencies with regard to the Hitting Noises which occur at indoor-outdoor golf exercise centers and the distribution of sound pressure level, and also has ever grasped the effect against this, as well. It is considered that such result could be utilized as the useful material for establishment of an effective countermeasure when some civil appeal concerned with the hitting noise of golf exercise facility is submitted in the future.

Keywords: Hitting Noise, Golf Exercise Facility, Noise Rating Curves, Presupposition

1. 서론

최근 사람들의 삶의 질적 향상과 문화수준이 높아짐에 따라 건강을 지키기 위해 다양한 스포츠를 즐기고 있는 실정이다. 그 중 골프문화가 대중으로 확산됨에 따라 주변 곳곳에 많은 골프 연습장이 건설되고 있다. 하지만 골프연습 시 골프채의 헤드와 골프공과의 타격소음이 끊이질 않아 주변 거주자의 평화한 생활환경을 침해하는 경우가 많아지고 있으며 이는 곧 소음을방으로 연결되어 강력한 민원의 대상이 되어가고 있다.

따라서 본 연구에서는 실제 골프장에서 발생하는 타격소음에 대한 주파수별 특성과 음압레벨의 분포를 파악해 보였으며 이를 토대로 타격소음을 사람에게 미치는 영향을 파악하기 위해 NR곡선으로 평가해 보았다.

이러한 자료는 향후 골프장 타격소음에 관한 민원 발생시 효과적인 대책 수립을 위한 유용한 자료로 활용될 수 있을 것으로 사료된다.

2. 골프채의 제원 및 타격소음의 측정방법

2.1 골프채의 제원

골프장에서 발생하는 타격소음은 골프채의 종류와 제질에 따라 달리며, 실제 골프장과 실제 골프장의 소음발생 요인에 다르다.

실험에 사용된 골프채는 연습장에서 주로 사용하는 대표적인 채로 분류하여 우드, 아이언, 웨지로 나누었으며, 각각의 명칭과 비교는 표 1. 그림 1.과 같다. 골프공과의 직접적 타격면에 해당하는 헤드부분은 케이스텐에 스테인레스로 이루어진 골프채를 실험에 사용하였고 실험의 정확도와 신뢰성을 위하여 프로골퍼의 타격을 기준으로 실험하였다.

<table>
<thead>
<tr>
<th>No.</th>
<th>명칭</th>
<th>길이 (inch)</th>
<th>무게 (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>드라이버</td>
<td>45.25</td>
<td>297</td>
</tr>
<tr>
<td>3.</td>
<td>스프린트</td>
<td>37</td>
<td>306</td>
</tr>
<tr>
<td>7.</td>
<td>매쉬니블리크</td>
<td>37</td>
<td>354</td>
</tr>
<tr>
<td>P/W</td>
<td>피칭웨지</td>
<td>35.75</td>
<td>354</td>
</tr>
</tbody>
</table>

2.2 골프장 타격소음 측정방법

측정대상 연습장의 모순은 그림 2.와 같으며 실험 연습장의 경우 시의 연습장과는 다르게 테이크 제질에 보호 커튼막이 있어서 타격소음 이외에 골프공과 커튼막의 충돌로 인한 소음이 발생하게 된다.
3. 분석 및 고찰

3.1 골프타격소음의 시간응답곡선

그림 4.는 각 타격소음의 시간응답파형과 시간대별 음압레벨을 나타낸 것이다.

3.2 골프장 타격소음의 주파수 분석

그림 5.는 녹음된 신호를 Symphonie를 이용하여 주파수 분석을 한 결과이다.

3.3 골프장에서 발생되는 타격소음을 측정하기 위하여 각 골프채의 종류별로 그림 3.과 같이 타격지점에서 1.5m떨어진 지점에서 DAT(Digital Audio Tape Recorder)로 각 골프채 당 5회씩 녹음하였으며, 녹음된 신호를 실험실에서 01dB사의 Symphonie를 이용하여 주파수 분석하였다.

실외 연습장의 파형은 반사음이 없으므로 순간적으로 급격히 증가했다가 감쇠하는 특성을 보이고 있지만 실내 연습장의 파형은 타석정면의 보호커튼막에 의한 충돌과 실내 반사음의 영향으로 타격 직후 실외 연습장에 비해 월천 높고 지속시간이 긴 파형을 나타내고 있다.

실외 연습장의 파형은 반사음이 없으므로 순간적으로 급격히 증가했다가 감쇠하는 특성을 보이지만 실내 연습장의 파형은 타석정면의 보호커튼막에 의한 충돌과 실내 반사음의 영향으로 타격 직후 실외 연습장에 비해 월천 높고 지속시간이 긴 파형을 나타내고 있다.

3.2 골프장 타격소음의 주파수 분석

그림 5.는 녹음된 신호를 Symphonie를 이용하여 주파수 분석을 한 결과이다.

3.2.1 골프장 타격소음의 주파수 분석

그림 5.로 보는 타격소음의 dB(A)는 실내·외 모두 골프채의 길이가 짧고 비거리가 적게 나오는 피칭웨지부터 골프채의 길이가 길고 비거리가 멀리 나오는 1번 우드 순으로 점점 커짐을 알 수 있으며 실외보다 실험실의 dB(A)가 더 높게 나타났음을 알 수 있다.
주파수별 특성을 살펴보면 골프 타격음이 자유공간으로 퍼져나가는 실외 연습장은 주로 고주파수 부분에 음압이 높게 나타나며 특히 1번 우드와 3번 우드는 다른 골프 타격음에 비해 6.3kHz와 8kHz에서 Peak를 나타내고 있으며 음압레벨도 높게 나타났다.

그러나 실내 연습장의 경우 골프 타격 시 발생하는 타격음이 실내 표면에 반사되고, 골프공과 보호커튼막의 충돌음이 발생하여 315Hz 부분의 중음역 부분까지 높아져다가 고음역으로 갈수록 서서히 감쇠하는 특성을 보이고 있다. 그러나 1번 우드와 3번 우드는 각각 4kHz와 6.3kHz의 고음역에서 순간적으로 음압레벨이 높게 나타난다. 이는 우드게임 헤드의 특성상 타격 시 날카로운 고음의 금속성 소리 때문이라는 사료된다.

3.3 NR곡선(Noise Rating Curves)에 의한 소음평가

NR곡선(Noise Rating Curves)은 소음을 정량화하여, 회화장에, 시그리움의 3가지 관점에서 평가하여 1961년 ISO가 정한 소음평가 곡선으로 1000Hz의 옥타브 밴드별로 종류별 NR(NR.Noise Rating)값과 일치하고 있다. 이를 토대로 하여 무과수분석된 결과를 1/1 옥타브 밴드로 하여 NR곡선(Noise Rating Curves)으로 평가해보면 다음 그림 6.과 같다.

그림 6과 표 2에서 보면 dB(A)가 증가하는 순으로 NR값도 증가하고 있음을 알 수 있으며 1번 우드가 가장 크게 사람에게 가장 많은 영향을 미칠 것으로 판단된다. 또한 차음등급결정주파수를 보면 실외 연습장에서의 골프 타격음은 4kHz와 8kHz에서 NR값이 결정되지만 실내연습장의 골프 타격음은 이보다 저음역인 500kHz와 4kHz에서 등급이 결정됨을 알 수 있다. 따라서 골프연습장에서 발생하는 타격소음의 영향을 최소화하기 위해서는 실내 연습장의 경우 차음등급이 정해지는 500Hz에서 4kHz에 맞는 흡음을 및 차음설계를 하였을 경우 큰 효과를 얻을 것으로 예상되며
실외 연습장의 경우 4kHz - 8kHz 대역을 제어할 수 있도록 차음대책을 세우면 주변 거주지역의 소음분쟁에 대한 긍정적인 효과를 가질 수 있을 것으로 사료된다.

3.4 골프장 타격소음의 예측

골프장에서 발생하는 타격소음은 반 자유공간에 있는 무정향 점음원과 같다. 이를 다음 식 (1.1)을 이용하여 음향파워레벨(PWL: Sound Power Level)을 구하면 식 (1.2)를 이용하여 그림 7에 나타난 전 지점에서의 SPL(Sound Pressure Level)을 예측하여 나타낼 수 있다.

\[
PWL = SPL + 20 \log r + 8 \quad \text{식 (1.1)}
\]
\[
SPL = PWL - 20 \log r - 8 \quad \text{식 (1.2)}
\]

그림 7. 타격소음의 SPL 예측지점

그림 8. 실외연습장 1번 우드의 음압레벨특성

그림 8은 골프타격소음으로 인한 분쟁의 대표적인 사례로 실외연습장의 1번 우드 타격 시 나선형 음압레벨 분포를 Surfer Program을 이용하여 파악해본 결과이다. 이것은 본 연구에서 타격장지인 중앙에서부터 거리가 멀어질수록 거리에 따라 거리의 2배당 약 6dB 정도 감소하는 특성을 보이고 있다. 따라서 이러한 예측식을 이용하면 민감한 영향 범위에 쉽게 파악할 수 있으므로 본 연구의 결과를 이용해 활용할 수 있을 것으로 사료된다.

3. NR곡선에 의해 골프 타격음을 평가해보면 실외 연습장의 경우 주로 고주파수 부분의 음압이 높게 나타났으며 실내 연습장의 경우 골프 타격음이 실내표면에 반사되고 보호커튼막과의 충돌음 인해 315Hz 근처의 음역가 부가 높아지기로 고음으로 감수록 감소하는 특성을 보이고 있다.

4. 골프연습장에서 발생하는 타격소음의 음압파워(PWL)를 알면 예측식을 이용하여 그 영향 범위를 쉽게 파악할 수 있으므로 본 연구의 결과를 활용해 활용할 수 있을 것으로 사료된다.

4. 결 론

본 연구는 최근 분쟁이 잦은 실내·외 골프 연습장의 타격소음특성 및 영향을 분석한 결과이며 결론은 다음과 같다.

1. 실내·외 골프연습장에서 발생하는 타격소음은 피정해지며 7번 아이언, 3번 우드, 1번 우드 순으로 음압레벨이 높게 나타났다.

2. 주파수 분석결과 타격음이 자유공간으로 퍼져나가는 실외연습장의 경우 주로 고주파수 부분의 음압이 높게 나타났으며 실내연습장의 경우 골프타격음이 실내표면에 반사되고 보호커튼막과의 충돌음 인해 315Hz 근처의 음역가 부가 높아지기로 고음으로 감수록 감소하는 특성을 보이고 있다.

3. 골프장 타격소음은 단발적 소음이지만 골프 연습자들이 몰리는 저녁시간에는 연속적인 타격음으로 인해 주변에 상당한 피해를 줄 것으로 예상된다.

위와 같은 감소특성 결과를 감안 한다면 향후 골프장 타격소음 평가를 위한 유용한 자료로 활용될 수 있을 것으로 사료된다.

참고문헌

1. 김재수 : "건축음향설계(개정판)", 세진사, 2004.3.
3. 김재수 : "환경문제조정을 위한 건설소음·진동 이론과 실제", 도서출판 서우, 2003
4. 김재수 : "건설소음의 규제기준과 소음표시제도", 대한건축학회지(건축) 41권 9호 (1997)
5. 이병윤, 김병주, 박재영, 김재수 : "SPI공법에 의한 항타소음의 전달 및 감소특성에 관한 실험적 연구" 한국소음진동학회 추계학술발표회 논문집 (1997)
6. 대한주택공사 : "주거환경개선을 위한 소음기준 연구", 1985
7. 한극음향공학연구회 : "건축환경수용학", 공간출판사, 1991
8. 국립환경연구소 : "소음·진동학", 산학출판사, 1989