고소음 작업장에서 발생하는 소음의 특성

김재수
원광대학교 건축공학과

The Characteristics of Noise Generated at High Noise Workshop

Jae-Soo Kim
Dept. of Architectural Engineering, Wonkwang University

(2016년 3월 15일 접수, 7월 28일 심사 및 수정 완료, 8월 19일 채택)

Abstract

As various working machines have been invented due to the development of industry, it can reduce time and labor. However, the working machines cause high noise according to the purpose and dimensions so have a bad influence on workers body and emotion. If they are exposed to working machine noise for a long time, they can have deaf such as hearing loss. Therefore, it is urgently required to minimize this problem and plan basic countermeasure in workshop but studies on noise characteristics aiming at various high noise working machines are really insufficient. In this respect, this study selected four workshop and measured the noise of 31 working machines operating in the actual sites. In addition, for exact analysis, this study examined waveform and time response curves and analyzed sound pressure level and A-weighted sound level(dB(A)). Based on this result, it evaluated noise of working machines using evaluation indexes such as PSIL and NR so that it aims to suggest exact noise characteristics of working machines. As the result of evaluation, this study could evaluate exact noise characteristics of 31 working machines causing high noise and if countermeasures for sound absorption of high noise workshop are planned based on the data, a more pleasant working environment would be created by workers.

Key words : High noise workshop, Noise characteristics, A-weighted sound level, Noise rating curves

요지

산업화의 발달에 의해 다양한 작업기계가 발명되면서 노동력과 시간을 줄일 수 있게 되었다. 그러나 이러한 작업기계는 사용 목적 및 제한에 따라 고소음을 발생시켜 작업자들에게 신체적, 정신적 악영향을 미치고 있으며, 장시간 작업기계 소음에 노출될 경우 난청과 같은 청각장애를 유발할 수도 있다. 따라서 이러한 문제를 최소화할 수 있도록 보다 근본적인 작업장 소음대책이 필요할 수 있으며 다양한 고소음 작업장의 작업기계를 대상으로 한 소음 특성의 연구 자료가 절실함으로 부족한 실정이다. 이러한 관점에서, 이 연구에서는 네 가지 작업장을 선정하여 현재 사용하고
김재수

있는 31개의 작업기계 소음을 측정하였다. 또한 정확한 분석을 위해 과형 및 시간응답 곡선을 파악하였으며, 주파수별 음압레벨과 청감보정음압레벨(dB(A))를 분석한 후 이를 토대로 PSIL, NR 등의 평가지수로 작업기계 소음을 평가하여 다양한 작업기계 소음의 정확한 특성을 제시하고자 하였다. 평가결과 고소음을 유발하는 31개 작업기계의 정확한 소음을 파악 할 수 있었으며, 이러한 자료를 바탕으로 향후 고소음 작업장의 황음대책을 강구한다면 작업자로 하여금 보다 더 편안한 업무 환경 조성이 가능할 것이다.

핵심용어 : 고소음 작업장, 소음특성, 청감보정음압레벨, NR곡선

Ⅰ. 서론

산업혁명 이후 다양한 작업기계가 발명되면서 노동력과 시간을 줄일 수 있게 되었다. 그러나 이러한 작업기계는 사용 목적 및 제원에 따라 고소음을 발생시키기 때문에 신체적, 정신적 악영향을 미치고 있으며, 장시간 작업기계 소음에 노출될 경우 난청과 같은 청력 장애를 유발할 수도 있다. 따라서 고소음 작업장에서 발생하는 작업기계 소음을 최소화하여 소음 피해를 줄일 수 있는 방식 및 차량 대책이 필요할 것으로 사료된다. 그러나 현재 국내에서 주로 사용되고 있는 고소음작업장 소음 저감대책은 방음보호구의 착용과 작업시간의 제한 등 소극적인 방법을 채택하고 있다. 그러나 이러한 방법은 보호구 착용으로 인한 불편함 및 작업시간 제한으로 인한 생산성 저하를 초래하는 등의 많은 문제를 유발하고 있다. 따라서 이러한 문제를 최소화함과 동시에 보다 근본적인 작업장 소음대책이 필요하다고 생각된다. 또한 국내외에서 측정된 작업기계 소음 특성을 평가할 경우 다양한 평가방법 대신 단순히 간단한 크기(Loudness)를 바탕으로 청감보정음압레벨(dB(A))의 물리적인 속성으로만 평가하여 합리적이고 정확한 작업기계 소음의 특성 파악이 이루어지지 않고 있다.

이러한 관점에서, 이 연구에서는 4개 작업장(석재 가공장, 보석가공장, 모형공작실, 직업교육장)을 선정해테 현재 사용하고 있는 31개의 작업기계 소음을 측정하였다. 또한 정확한 분석을 위해 과형 및 시간응답 곡선을 파악하였으며, 주파수별 음압레벨과 dB(A)를 분석한 후 이를 토대로 PSIL, NR 등의 평가지수로 작업기계 소음을 평가하여 다양한 작업기계 소음의 정확한 특성을 제시하고자 하였다.

Ⅱ. 측정대상 작업기계의 제원 및 소음측정

2.1. 측정대상 작업기계의 제원

4개 작업장에서 사용하는 측정대상 작업기계는 총 31가지이며, 대표적인 작업기계의 모습과 각 작업기계의 제원은 Fig. 1과 Table 1과 같다.

Fig. 1. Representative working machines in workshop.
고소음 작업장에서 발생하는 소음의 특성

Table 1. Measurement object working machines specifications

<table>
<thead>
<tr>
<th>Workshop</th>
<th>No.</th>
<th>Working machines</th>
<th>Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone processing room</td>
<td>1</td>
<td>Rock grinder</td>
<td>39KW</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Talc stone</td>
<td>60KW</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Stone flaming machine</td>
<td>1KW</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Stone Cutter</td>
<td>22KW</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Rock cross cutting machine</td>
<td>85KW</td>
</tr>
<tr>
<td>Jewelry processing room</td>
<td>6</td>
<td>Jewelry grinder</td>
<td>0.2KW</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Facet grinder</td>
<td>0.2KW</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Gemstone shearing machine</td>
<td>0.75KW</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Rock cutter</td>
<td>0.35KW</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Minute jewelry grinder</td>
<td>0.45KW</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Disk sander</td>
<td>0.3KW</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Gloss grinder</td>
<td>0.2KW</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Gloss both-sides grinder</td>
<td>0.4KW</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Air dust collector</td>
<td>1.0KW</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Gypsum crusher</td>
<td>0.5KW</td>
</tr>
<tr>
<td>Model making room</td>
<td>16</td>
<td>Small drill</td>
<td>0.08KW</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Disk sander</td>
<td>0.1KW</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Middle-typed table circular saw</td>
<td>0.4KW</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Middle-typed circular saw</td>
<td>0.2KW</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Table squash saw</td>
<td>1.0KW</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Table SCSI saw</td>
<td>0.2KW</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Small circular saw</td>
<td>0.08KW</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>Electric plane for modeling</td>
<td>0.5KW</td>
</tr>
<tr>
<td>Vocational education place</td>
<td>24</td>
<td>Common lathe</td>
<td>1KW</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CNC lathe</td>
<td>22KW</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Vertical milling</td>
<td>3.7KW</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>Steel processing saw</td>
<td>2.5KW</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>Table chain-saw</td>
<td>1.3KW</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>Vertical cutting chain-saw</td>
<td>1.7KW</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>Automatic plane</td>
<td>1.3KW</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Wood chain-saw</td>
<td>1.5KW</td>
</tr>
</tbody>
</table>

2.2. 작업기계의 소음 측정방법

측정은 노동부 고시 제 2005-1-49(작업환경 측정 및 정도관리규정)에 따라 측정하였으며, 측정 시 소음계의 위치는 지면으로부터 1.2 m의 높이에 삼각대로 고정하여 설치하였고, 작업장내에 설치되어 있는 작업기계로부터 소음계를 통해 듣어온 신호를 DAT(Digital Audio Tape Recorder)로 현장에서 녹음하였다. 또한 녹음된 신호는 실험실에서 B&K사의 Pulse Multi Analyzer System을 이용하여 분석하였으며, 측정 장비 구성과 측정 장면은 Fig. 2와 같다.

Fig. 2. Measurement scene & analysis instrument.

Fig. 3. Representative working machines characteristics.

Fig. 3. Representative working machines characteristics.

2.3. 작업기계 소음의 특성

3.1. 시간에 따른 소음레벨의 변동 및 시간응답

작업자가 작업기계를 사용할시 측정된 작업기계의 시간에 따른 소음레벨 변동특성과 소음특성을 나타내는 시간 응답곡선의 특징을 더욱 체계적으로 나타내는데 그 모습은 Fig. 3과 같다.
Fig. 3에서 시간에 따른 응답레벨의 변화를 살펴보면 대부분의 고소음 작업기계의 경우 대체로 일정한 구간을 반복하는 성장소음의 특성을 나타내고 있다. 그러나 보석가공 작업장에서 사용하는 12번(광택 연마기)와 직업교육장에서 사용하는 27번(철재 가공목)의 경우 일정한 패턴을 유지하는 다른 고소음 작업기계의 특성과는 달리 불규칙한 변동소음의 특성으로 나타났다. 이는 장성이 높은 보석과 철재를 한 번에 가공할 수 없어, 커핑과 공회전을 반복하기 때문인 것으로 사료된다.

3.2. 작업기계 소음의 주파수별 음향특성

작업장에서 측정된 31개 작업기계의 소음특성을 20Hz~8kHz까지의 주파수별로 나누어 분석한 결과는 Table 2와 Fig. 4와 같다.

<p>| Table 2. Frequency and dB(A) characteristics of working machines in workshop |
|---|--------------|---------|---------|---------|---------|---------|---------|---------|</p>
<table>
<thead>
<tr>
<th>Workshop</th>
<th>No</th>
<th>Specification</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1,000</th>
<th>2,000</th>
<th>4,000</th>
<th>8,000</th>
<th>dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone Processing room</td>
<td>1</td>
<td>39kW</td>
<td>78.3</td>
<td>81.4</td>
<td>76.8</td>
<td>77.8</td>
<td>81.0</td>
<td>81.8</td>
<td>84.5</td>
<td>87.6</td>
<td>91.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>60kW</td>
<td>78.7</td>
<td>81.4</td>
<td>76.6</td>
<td>77.9</td>
<td>81.1</td>
<td>81.8</td>
<td>87.8</td>
<td>90.8</td>
<td>94.8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1kW</td>
<td>79.8</td>
<td>81.4</td>
<td>77.2</td>
<td>78.1</td>
<td>81.2</td>
<td>83.5</td>
<td>90.0</td>
<td>97.4</td>
<td>98.7</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>22kW</td>
<td>78.7</td>
<td>81.0</td>
<td>78.5</td>
<td>79.1</td>
<td>81.9</td>
<td>86.0</td>
<td>96.7</td>
<td>103.6</td>
<td>104.8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>85kW</td>
<td>79.2</td>
<td>81.2</td>
<td>79.2</td>
<td>79.8</td>
<td>82.5</td>
<td>90.0</td>
<td>98.0</td>
<td>104.5</td>
<td>105.6</td>
</tr>
<tr>
<td>Jewelry Processing room</td>
<td>6</td>
<td>0.2kW</td>
<td>58.0</td>
<td>68.2</td>
<td>66.8</td>
<td>68.0</td>
<td>70.9</td>
<td>69.3</td>
<td>60.9</td>
<td>59.6</td>
<td>74.3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.2kW</td>
<td>67.9</td>
<td>68.1</td>
<td>65.3</td>
<td>63.8</td>
<td>66.5</td>
<td>69.5</td>
<td>66.7</td>
<td>61.9</td>
<td>74.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.75kW</td>
<td>69.7</td>
<td>82.1</td>
<td>71.4</td>
<td>70.6</td>
<td>72.1</td>
<td>67.5</td>
<td>67.2</td>
<td>69.5</td>
<td>77.9</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.35kW</td>
<td>86.6</td>
<td>92.0</td>
<td>65.7</td>
<td>70.0</td>
<td>67.8</td>
<td>71.5</td>
<td>71.3</td>
<td>59.5</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.45kW</td>
<td>61.4</td>
<td>62.4</td>
<td>68.2</td>
<td>67.9</td>
<td>73.5</td>
<td>77.2</td>
<td>71.0</td>
<td>64.5</td>
<td>82.3</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0.3kW</td>
<td>70.4</td>
<td>76.2</td>
<td>76.1</td>
<td>81.5</td>
<td>75.7</td>
<td>73.7</td>
<td>74.2</td>
<td>74.9</td>
<td>83.7</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.2kW</td>
<td>66.7</td>
<td>74.5</td>
<td>79.4</td>
<td>82.2</td>
<td>83.8</td>
<td>74.7</td>
<td>70.5</td>
<td>60.3</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0.4kW</td>
<td>84.4</td>
<td>77.1</td>
<td>86.6</td>
<td>80.9</td>
<td>80.5</td>
<td>80.9</td>
<td>81.4</td>
<td>77.1</td>
<td>88.2</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>1.0kW</td>
<td>89.4</td>
<td>84.2</td>
<td>84.1</td>
<td>85.8</td>
<td>76.2</td>
<td>71.2</td>
<td>62.7</td>
<td>55.1</td>
<td>88.6</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.5kW</td>
<td>84.6</td>
<td>88.5</td>
<td>90.9</td>
<td>90.9</td>
<td>83.2</td>
<td>82.2</td>
<td>86.9</td>
<td>89.4</td>
<td>94.5</td>
</tr>
<tr>
<td>Model making room</td>
<td>16</td>
<td>0.08kW</td>
<td>56.2</td>
<td>61.0</td>
<td>50.1</td>
<td>62.4</td>
<td>63.3</td>
<td>56.9</td>
<td>54.0</td>
<td>49.4</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>0.1kW</td>
<td>63.4</td>
<td>67.1</td>
<td>61.2</td>
<td>62.7</td>
<td>65.8</td>
<td>62.3</td>
<td>58.6</td>
<td>59.8</td>
<td>67.5</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0.4kW</td>
<td>62.2</td>
<td>79.7</td>
<td>74.4</td>
<td>69.4</td>
<td>64.1</td>
<td>58.5</td>
<td>56.2</td>
<td>49.3</td>
<td>71.9</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>0.2kW</td>
<td>61.4</td>
<td>74.7</td>
<td>60.7</td>
<td>57.8</td>
<td>69.1</td>
<td>61.6</td>
<td>66.4</td>
<td>64.7</td>
<td>72.3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.0kW</td>
<td>48.1</td>
<td>64.7</td>
<td>66.5</td>
<td>75.4</td>
<td>70.6</td>
<td>62.2</td>
<td>67.3</td>
<td>68.1</td>
<td>76.3</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>0.2kW</td>
<td>50.5</td>
<td>51.0</td>
<td>47.9</td>
<td>53.6</td>
<td>72.6</td>
<td>73.6</td>
<td>63.3</td>
<td>53.8</td>
<td>77.2</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>0.08kW</td>
<td>71.9</td>
<td>74.7</td>
<td>57.2</td>
<td>68.2</td>
<td>69.3</td>
<td>77.0</td>
<td>89.8</td>
<td>91.3</td>
<td>94.4</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0.5kW</td>
<td>58.6</td>
<td>76.6</td>
<td>86.3</td>
<td>90.9</td>
<td>93.1</td>
<td>92.7</td>
<td>90.9</td>
<td>87.7</td>
<td>98.6</td>
</tr>
<tr>
<td>Vocational education place</td>
<td>24</td>
<td>11kW</td>
<td>32.1</td>
<td>36.4</td>
<td>44.5</td>
<td>53.5</td>
<td>63.5</td>
<td>68.6</td>
<td>61.5</td>
<td>58.8</td>
<td>71.5</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>22kW</td>
<td>33.3</td>
<td>40.3</td>
<td>47.5</td>
<td>55.5</td>
<td>58.1</td>
<td>62.9</td>
<td>65.9</td>
<td>70.5</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>3.7kW</td>
<td>32.3</td>
<td>35.6</td>
<td>39.1</td>
<td>54.1</td>
<td>65.4</td>
<td>71.9</td>
<td>75.2</td>
<td>61.1</td>
<td>81.1</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>2.5kW</td>
<td>38.9</td>
<td>43.2</td>
<td>55.8</td>
<td>58.4</td>
<td>65.7</td>
<td>74.7</td>
<td>75.9</td>
<td>76.9</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>1.3kW</td>
<td>34.1</td>
<td>37.4</td>
<td>51.3</td>
<td>65.6</td>
<td>71.7</td>
<td>80.6</td>
<td>89.2</td>
<td>85.3</td>
<td>91.7</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>1.7kW</td>
<td>45.5</td>
<td>65.0</td>
<td>57.0</td>
<td>67.9</td>
<td>67.8</td>
<td>85.8</td>
<td>88.6</td>
<td>82.9</td>
<td>92.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1.3kW</td>
<td>35.0</td>
<td>61.8</td>
<td>71.4</td>
<td>78.5</td>
<td>85.2</td>
<td>86.5</td>
<td>94.6</td>
<td>91.5</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>1.5kW</td>
<td>45.2</td>
<td>47.0</td>
<td>64.1</td>
<td>76.6</td>
<td>81.9</td>
<td>91.1</td>
<td>96.0</td>
<td>91.0</td>
<td>99.0</td>
</tr>
</tbody>
</table>
고소음 작업장에서 발생하는 소음의 특성

Table 2와 Fig. 4(a)를 보면 석재 가공작업장에서 사용하는 작업기계의 경우 1kHz이하의 유사한 패턴을 보이고 있으나 2kHz부터는 기가벨로 차이가 있음을 알 수 있다. Fig. 4(b)와 (c)를 보면 보석가공 작업장과 모형공작 작업장에서 사용하는 대부분의 작업기계의 경우 20Hz~200Hz의 저음역에서는 불규칙하게 소음레벨이 증가하는 패턴을 보이고 있으며, 315Hz~123kHz의 중음역에는 소음레벨의 증가폭이 저음역에 비해 줄어들면서 5kHz이상의 고음역에서는 소음레벨이 서서히 감쇠하는 패턴의 소음특성을 나타낸다. Fig. 4(d)를 보면 직업교육 작업장에서 사용하는 대부분의 작업기계의 경우 20Hz~200Hz의 저음역에서는 소음레벨이 낮게 나타났으나, 315Hz 이상의 영역에서는 소음레벨이 증가하게 나타난다. Fig. 4(e)를 보면 측정된 작업기계 소음은 66dB(A)~105.6dB(A)까지 매우 높은 음압레벨을 유지하고 있으며, 작업기계 간 변화폭도 매우 크게 나타났으며, 일반 이상에 해당하는 19개의 작업기계가 저주파수 대역보다는 고주파수 대역에서 높은 음압레벨을 보였다. 따라서 일반적으로 인간의 귀의 저주파수보다는 고주파수와 같은 난카리운 소리에 더 민감하게 반응하기 때문에 작업자로 하여금 신체적, 정신적 악영향을 미칠 것으로 사료된다. 또한 이러한 고소음 작업장의 작업기계 소음에 장시간 노출될 경우 작업자들에게 신체적, 정신적 악영향을 미치기 때문에 고소음을 작업장의 방음대책이 절실히 필요한 것으로 사료된다.

IV. 작업기계 소음의 평가

4.1. dB(A)에 의한 평가

측정된 작업기계의 소음도(Noise Level, dB(A))를 소음이 인체에 미치는 영향을 비교 분석한 결과는 Table 3과 같다.

Table 3을 보면 31개의 작업기계 중 4개의 작업기계를 제외하고 모두 청력손실의 발생 시기를 알 수 있는 것으로 나타났다. 특히 난청과 같은 청력장애를 유발할 수 있는 작업기계도 12개로 그
상가성을 알 수 있다. 또한 작업장의 특성상 여러 명이 한 작업 공간에서 작업을 하며, 동시에 대부분의 작업기계가 작동되기 때문에 그 피해 정도는 더 클 것으로 사료된다. 따라서 고소음작업기계 소음에 지속적으로 노출될 경우 작업자로 하여금 많은 신체적 정신적 악 영향을 미칠 것으로 사료된다.

4.2. PSIL에 의한 평가

PSIL(Preferred Speech Interference Level)은 Klumpp & Webster가 여러 종류의 소음평가법에 대해 회화방해도와의 관계를 비교 검토하여 제안한 것으로, 회화음역인 500Hz, 1,000Hz, 2,000Hz, 4,000Hz의 음압레벨을 산출평균한 값이다. 31개 작업기계 소음의 PSIL은 Fig. 5와 같다.

작업기계의 PSIL 분포는 59.2dB~91.9dB이며, 소음도(db(A))와 비슷한 폐렴으로 나타났다. 위의 결과는 ISO/TC 43에 제안한 최화방해레벨과 회화 가능한 거리에 비교한 결과는 Table 4와 같다.

작업기계 소음의 PSIL은 ISO/TC 43에서 제안된 Table 3과 비교해보면, 16번 “소형드릴”의 경우만 큰소리로 말한 경우 1.5m 안에서 의사소통이 가능하지만 나머지 작업기계는 PSIL이 이를 상회하여 원활한 대화가 어려울 것으로 사료된다. 특히 PSIL로 평가 불가능한 작업기계는 석재와 보석가공 작업장에서는 5개, 모형공작실은 2개, 작업교육 작업장은 4개로, 31개 작업기계중 절반 이상에 해당하는 16개로 나타났다. 따라서 작업자간의 의사소통이 무엇보다 중요한 작업장의 특성상 높은 PSIL로 인하여 안전사고의 위험등이 있을 것으로 사료된다. 또한 이러한 작업기계 소음에 장시간 노출 될 경우 난청과 같은 많은 음향적 장애가 발생할 수 있을 것으로 사료된다.

4.3. NR곡선에 의한 평가

NR곡선(Noise Rating Curves)은 소음을 청력장해, 회화방해, 시끄러움의 3가지 관점에서 평가하여 1961년 ISO가 정한 소음평가 곡선으로 1,000Hz의 옥타브렌드 레벨이 평가곡선의 NRN Table 3. Effect of noise on the body

<table>
<thead>
<tr>
<th>Noise Level (dB(A))</th>
<th>Effect on the body</th>
<th>Working machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Hearing loss in case of long exposure</td>
<td>4,5</td>
</tr>
<tr>
<td>90</td>
<td>Urine increase, poor hearing</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Early break of water bag</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Hearing loss beginning</td>
<td>8,9,18,19,20,21,24,25,26,27</td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. PSIL and communication distance (ISO Technical Report 3352, 1974)

<table>
<thead>
<tr>
<th>PSIL (dB)</th>
<th>The maximum distance of satisfactory understanding (m)*</th>
<th>Working machines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal sound</td>
<td>High sound</td>
</tr>
<tr>
<td>40</td>
<td>4.2</td>
<td>8.4</td>
</tr>
<tr>
<td>45</td>
<td>2.3</td>
<td>4.6</td>
</tr>
<tr>
<td>50</td>
<td>1.3</td>
<td>2.6</td>
</tr>
<tr>
<td>55</td>
<td>0.75</td>
<td>1.5</td>
</tr>
<tr>
<td>60</td>
<td>0.42</td>
<td>0.85</td>
</tr>
<tr>
<td>65</td>
<td>0.25</td>
<td>0.50</td>
</tr>
<tr>
<td>70</td>
<td>0.13</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Non-available</td>
<td>1,2,3,4,5,11,12,13,14,15,22,23,28,29,30,31</td>
</tr>
</tbody>
</table>

Fig. 5. PSIL of 31 working machines in workshop.

NR곡선(Noise Rating Curves)은 소음을 청력장해, 회화방해, 시끄러움의 3가지 관점에서 평가하여 1961년 ISO가 정한 소음평가 곡선으로 1,000Hz의 옥타브렌드 레벨이 평가곡선의 NRN
Table 5. NR of working machines in workshop

<table>
<thead>
<tr>
<th>Work shop</th>
<th>No</th>
<th>Frequency (Hz)</th>
<th>NR decide Frequency</th>
<th>NR Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>125</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Stone Processing room</td>
<td>1</td>
<td>78.3</td>
<td>81.4</td>
<td>76.8</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>78.7</td>
<td>81.4</td>
<td>76.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>79.8</td>
<td>81.4</td>
<td>77.2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>78.7</td>
<td>81.0</td>
<td>78.5</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>79.2</td>
<td>81.2</td>
<td>79.2</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>58.0</td>
<td>68.2</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>67.9</td>
<td>68.1</td>
<td>65.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>69.7</td>
<td>82.1</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>86.6</td>
<td>92.0</td>
<td>65.7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>61.4</td>
<td>62.4</td>
<td>68.2</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>70.4</td>
<td>76.2</td>
<td>76.1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>66.7</td>
<td>74.5</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>84.4</td>
<td>77.1</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>89.4</td>
<td>84.2</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>84.6</td>
<td>88.5</td>
<td>90.9</td>
</tr>
<tr>
<td>Jewelry processing room</td>
<td>16</td>
<td>56.2</td>
<td>61.0</td>
<td>50.1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>63.4</td>
<td>67.1</td>
<td>61.2</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>62.2</td>
<td>79.7</td>
<td>74.4</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>61.4</td>
<td>74.7</td>
<td>60.7</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>48.1</td>
<td>64.7</td>
<td>66.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>50.5</td>
<td>51.0</td>
<td>47.9</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>71.9</td>
<td>74.7</td>
<td>57.2</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>58.6</td>
<td>76.6</td>
<td>86.3</td>
</tr>
<tr>
<td>Model Making room</td>
<td>24</td>
<td>32.1</td>
<td>36.4</td>
<td>44.5</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>33.3</td>
<td>40.3</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>32.3</td>
<td>35.6</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>38.9</td>
<td>43.2</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>34.1</td>
<td>37.4</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>45.6</td>
<td>65.0</td>
<td>57.0</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>35.0</td>
<td>61.8</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>45.2</td>
<td>47.0</td>
<td>64.1</td>
</tr>
</tbody>
</table>

(Noise Rating Number)과 일치하고 있다. 이를 토대로 하여 31개 작업기계 소음의 주파수 분석
된 결과를 1/1 오디오브랜드로 하여 NR곡선(Noise Rating Curves)에 plotting하여 분석·평가해 본 결과는 Table 5와 Fig. 6과 같다.

NR은 NR=64~NR=100으로 나타났으며, 석재 가공 작업장에서 사용하는 3, 4, 5번(석재바리기, 석재재단기, 석재 교차재단기) 작업기계는 평가
불가능하나 나타났다. 또한 ISO에서는 작업장의 경우 NR=60~NR=70으로 규제하고 있는데 이러한

![Fig. 6. NR of 31 working machines in workshop.](Image)
규제기준에 맞춰 이 연구에서 측정된 31개 작업기계의 소음을 작업장 NR규제 기준과 비교한 결과는 Table 6과 같다.

Table 6. ISO NR workshop standard

<table>
<thead>
<tr>
<th>Regulatory standard of NR work place</th>
<th>Suitable for workshop standards</th>
<th>Beyond the workshop standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working machine No.</td>
<td>All working machines except 16, 17, 18 working machines</td>
<td></td>
</tr>
<tr>
<td>Percentage</td>
<td>9.7%</td>
<td>90.3%</td>
</tr>
</tbody>
</table>

규제기준에 맞춰 이 연구에서 측정된 31개 작업기계의 소음을 작업장 NR규제 기준과 비교한 결과는 Table 6과 같다.

Table 7. NR Decide frequency of working machines

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Working machines No.</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>63Hz</td>
<td>9</td>
<td>3%</td>
</tr>
<tr>
<td>125Hz</td>
<td>9</td>
<td>3%</td>
</tr>
<tr>
<td>250Hz</td>
<td>18</td>
<td>3%</td>
</tr>
<tr>
<td>500Hz</td>
<td>12, 16</td>
<td>6%</td>
</tr>
<tr>
<td>1,000Hz</td>
<td>6, 7, 10, 14, 21, 24</td>
<td>20%</td>
</tr>
<tr>
<td>2,000Hz</td>
<td>8, 13, 23, 26, 28, 29, 30, 31</td>
<td>26%</td>
</tr>
<tr>
<td>4,000Hz</td>
<td>1, 2, 3, 4, 5, 11, 15, 17, 19, 20, 22, 25, 27</td>
<td>42%</td>
</tr>
<tr>
<td>8,000Hz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

국내의 경우 작업장에서 사용하는 작업기계의 소음을 대책으로 방음보호구의 착용과 작업시간의 제한을 주로 채택하고 있다. 그러나 이러한 대책의 경우 서론에서 언급하였듯이 많은 문제점이 발생시키며, 엄격한 소음환경을 개선할 수 있는 적합한 방안이 되지 못한다. 이러한 문제점이 발생하는 이유 중 하나는 정확한 작업기계의 소음특성 자체가 절대적으로 부족하기 때문이다. 따라서 이 연구에서는 고소음을 유발하는 대가지 작업장을(석재가공장, 방식가공장, 모형공작실, 직업교육장)을 선정하여 현재 사용하고 있는 31개의 작업기계 주파수별 소음 특성과 dB(A)를 파악해 보았으며, 이러한 소음을 PSIL, NR등의 다양한 평가방법으로 비교·분석해보았다. 그 결과는 다음과 같다.

1) 측정된 고소음을 작업장 작업기계 소음은 66 ~105.6dB(A)의 음압레벨로 20Hz~200Hz의 저음역보다는 315Hz 이상의 고음역에서 음압레벨이 증가하게 나타났다. 또한 시간에 따른 음압레벨의 변화는 12번(광택연마기)과 27번(철재가공기)을 제외하고 대부분의 작업기계가 정상소음의 특성으로 나타났다.

2) 작업기계 소음을 dB(A)에 따른 소음이 인체에 미치는 영향을 평가해본 결과 31개의 작업기계 중 4개의 작업기계를 제외하고 모두 청력손실의 발생을 일으키는 것으로 나타났다. 특히 난청과 같은 정력장해를 유발할 수 있는 작업기계는 1개로 나타나 고소음 작업기계를 작업
자가 사용한 경우 많은 음향적 피해가 발생한 것으로 사료된다.

3) 작업기계 소음을 PSIL로 평가해 본 결과 31개 작업기계 소음중 소형드릴의 경우만 큰소리로 말할 경우 1.5m 안에서 의사소통이 가능하게 나타났다. 또한 PSIL로 평가 불가능한 작업기계는 석재가공 작업장은 5개, 보석가공장은 5개, 모형작업은 2개, 직업교육장은 4개로, 31개 작업기계중 16개 이상에 해당하는 16개로 나타났다. 따라서 작업자간의 의사소통이 매우 중요시 되는 작업장의 특성상 본인의 의사소통이 어려워 안전사고의 위험 및 생산성 저하등을 초래할 것으로 사료된다.

4) NR 곡선에 의한 고소음 작업장 작업기계 소음의 평가결과 작업기계 소음에 노출되었을 경우에 8,000Hz 대역의 소음에 많은 영향을 받는 것으로 나타났다. 따라서 향후 작업장 내부의 방음대책 수립시 이러한 대역은 흡수할 수 있는 다공질 흡음을 설치하는 소음을복합을 갖추 하면 작업장 작업기계 소음은 보다 효과적으로 제거할 수 있을 것으로 사료된다.

연구 결과 4개 작업장에서 사유하는 31가지 작업기계는 높은 음압레벨로 인하여 작업자로 하여금 신체적 정신적 악영향과 더불어 난청등과 같은 청각적 장애를 일으킬 수 있을 것으로 사료된다. 따라서 이러한 연구 결과를 바탕으로 고소음 작업기계의 음향특성을 정확하게 파악하여, 향후 고소음 작업장의 흡음을복합을 갖추하다면 작업자로 하여금 보다 더 평화한 작업 환경 조성이 가능할 것이다.

References