A Study on the Characteristics of Attenuation and Propagation of Piling Noise by Oil Pressure Method in Construction Field

이병윤* 조원희** 윤해동***
Lee, Byeong-Yun Cho, Won-Hee Yun, Hae-Dong
곽광수** 박재영***
Kwak, Kwang-Soo Park, Jae-Young Kim, Jae-Soo

Abstract

Recently, urban construction work has caused much annoyance. But, construction noise standard of our country is inefficient. Especially, diesel piling method has caused much problem of highly impactful sound and vibration. Construction works, in order to solve these problem, using oil pressure method of low noise and low vibration equipment. Practical solution for the construction equipment noise, however, are very difficult because of the lack of basic data and insufficiency of the existing research. In this point, this study attempts to surveys the characteristics of attenuation and propagation of construction noise in piling works using oil pressure method. And this study intends to get the basic data for establishment of a standard about construction equipment noise.

Keywords: Construction Noise, Oil Pressure Piling Noise, Noise Rating Curves

I. 서론

최근에 도심에서 발생하는 건설공사의 경우 많은 민원이 야기되고 있다. 특히 기초재정공사 시 그 사용빈도가 높은 항타기의 경우 기존의 연구결과1) 가장 신경 쓰이고 시끄러운 건설기계라고 지적하고 있으며 이중 기성 콘크리트발

 목울 사용한 항타공법인 디젤항타공법의 경우 항타시 발생하는 높은 충격음과 진동의 발생으로 도심지 공사의 경우 많은 문제를 유발하고 있다. 따라서 최근에는 이러한 문제를 해결하기 위해 저소음. 저진동 항타공법의 유압식항타공

법을 많이 사용하고 있으나 기존의 연구자료가 미흡하여 민원발생시 합리적인 해결방안이 어려운 실정이다.

* 경화원, 숭천창업대학 건축디자인과 전임교사
** 경화원, 원광대 건축공학과 석사과정
*** 경화원, 원광대 건축공학과 박사과정
**** 경화원, 원광대 건축공학과 조교수, 공학박사

1) 이병윤, 김재수: “건설현장에서 발생하는 건설기계소음의 주관적 반응평가에 관한 연구”, 대한건설기계 협회지 100호, 1997: pp 47-51
따라서 본 연구에서는 기초 건설공사의 지로소음, 지진동 공법으로 많이 사용되는 유압식 향타 공법에 의한 향타소음의 전달 및 감쇠특성을 파악하고자 하였으며, 이를 토대로 차후 건설기계 소음에 대한 세부적인 기준설정을 위한 기초적인 자료를 제시하고자 한다.

II. 건설소음의 측정방법

국내 소음진동 규제법에 의한 건설소음 규제기준의 측정방법을 가지고는 건설기계소음에 대한 전달 및 감쇠특성을 파악할 수가 없다. 따라서 본 연구에서는 다파에서 규정하고 있는 건설기계의 소음측정방법인 “건설기계의 끈음·정동측정기준(안)”과 “건설기계의 끈음측정법(안)”을 이용하여 그림 1과 같이 7m, 15m, 30m에서 건설기계소음을 측정2하였다.

![그림 1. 건설기계소음 측정위치](image)

2) 건설기계 소음의 측정청은 기계를 절대으므로 보고 기계에서 벗어진 위치에서 측정하는 것이 바람직하다. 건설기계소음을 측정하기 위한 표준은 기계에서 주로 발생하는 유형으로 하는 것이 좋고 대부분 기계의 표준이나 건설작업을 기준으로 하는 것이 일반적이다.

모니터, REAL-TIME FREQUENCY ANALYZER

- Calibrator (B&K, Type 4231)
- Microphone (B&K, Type 4165)
- Microphone Pre-amplifier (B&K Type 2669)
- Nexus (B&K Type 2690)
- DAT (Sony P2164A)
- Sound Analysis System (Symphonie)
- Real-time Frequency Analyzer (B&K Type 2144)
- Notebook Computer

그림 2. 건설기계소음 측정을 위한 기기구성도

모니터, REAL-TIME FREQUENCY ANALYZER

- Calibrator (B&K, Type 4231)
- Microphone (B&K, Type 4165)
- Microphone Pre-amplifier (B&K Type 2669)
- Nexus (B&K Type 2690)
- DAT (Sony P2164A)
- Sound Analysis System (Symphonie)
- Real-time Frequency Analyzer (B&K Type 2144)
- Notebook Computer

그림 2. 건설기계소음 측정을 위한 기기구성도

- DAT (Digital Audio Tape Recorder)로 녹음하여 실험실에서 분석하였다. 측정 및 분석주파수 범위는 25Hz ~ 8kHz까지 1/3 Octave Band 중심주파수별로 10주간 측정하였으며 동시에 전 대역 소음레벨도 dB(A)값으로 측정 및 분석하였다.

III. 측정대상지역 위치 및 지질현황

3.1 측정대상 지역의 위치 및 현황

측정 대상지역은 경상북도 영천시 영천구 인후동에 위치한 Y택시개발지구로서 조사지역은 시내의 동부전에 위치하고 동북쪽에 해발 434.9m의 두리봉이 있으며 측정당시 온도 25℃, 습도 70%, 풍속 0.8~1m/sec이고 주위에는 기존의 건물이 없는 평탄지로서 배경소음(background noise)가 낮은 B아파트 신축현장 대상으로 유압식 향타소음의 주파수별 소음레벨을 측정하였으나.

3.2 측정대상 지역의 지질현황

측정대상 지역의 지질단면도는 그림 3과 같다.
그림 3. 지층단면도

그림 3에서 보면 표도(좌상)에서 11.6m까지는 중화드로이고 11.6m 이상은 중화임으로서 중 촉압 점 모래로 분해된 상태이다. 또한 N값을 보 면 중화모래에서는 표도에서 14, 25m에서 18, 5.5m에서 25로 서서히 증가하다가 8.5m에서 40, 11.6m에서 50으로 급속히 증가하고 있으며, 중 화임에서는 50을 유지하고 있다. 본 조사지역 에서는 PHC pile(400Φ) L=11m로 시행되었다.

IV. 문석 및 고찰

유압식 항타공법에 의한 항타소음의 주파수별 소음특성을 파악하기 위하여 그림 1, 그림 2와 같은 방법으로 하여 일반적으로 가장 많이 사용되는 밸런스 7cm, 브이 탐 정격이 0.5m, 규격 50ton, 정격출력 180HP/2100RPM의 항타기를 대상으로 하여 소음을 측정하였다.

4.1 주파수별 소음특성의 변화 및 감쇠특성

(1) 항타

항타소음을 측정한 결과 측정기리에 따른 주파수별 소음특성은 그림 4와 같고, 이를 단일평가지수인 dB(A)와 NR곡선으로 비교해 보면 그림 5, 표 1과 같다.

<table>
<thead>
<tr>
<th>평가지수</th>
<th>측정거리</th>
<th>7m</th>
<th>15m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB(A)</td>
<td>95.3</td>
<td>88.7</td>
<td>83.4</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>NR-100</td>
<td>NR-95</td>
<td>NR-90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-90</td>
<td>NR-85</td>
<td>NR-80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-85</td>
<td>NR-80</td>
<td>NR-75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-75</td>
<td>NR-70</td>
<td>NR-65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-70</td>
<td>NR-65</td>
<td>NR-60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-65</td>
<td>NR-60</td>
<td>NR-55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-55</td>
<td>NR-50</td>
<td>NR-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-50</td>
<td>NR-45</td>
<td>NR-45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-45</td>
<td>NR-40</td>
<td>NR-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-40</td>
<td>NR-35</td>
<td>NR-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-35</td>
<td>NR-30</td>
<td>NR-30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-30</td>
<td>NR-25</td>
<td>NR-25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-25</td>
<td>NR-20</td>
<td>NR-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NR-20</td>
<td>NR-15</td>
<td>NR-15</td>
<td></td>
</tr>
</tbody>
</table>

그림 4에서 항타시 주파수별 특성을 살펴보 면 엔진음의 영향으로 비교적 낮은값이 큰 100Hz이하의 저음역에서는 경례에 따른 감쇠가 크게 나타나지 않지만 대부분의 에너지는 점증되어 있는 125Hz~3150Hz의 중음역 대역에서는 경례가 빠르게따라 감쇠율이 증가하고 있다. 또한 그 이상의 고음역으로 갈수록 거리감쇠는 크게 나타나지 않으며 일정한 감쇠특성을 보이
고 있다. 이를 그림 5와 같이 NR급선으로 평가해 보면 차음등급을 결정하는 주파수 대역이 가까운 거리인 7m에서는 250Hz에서 결정되고 있고 15m, 30m에서는 500Hz에서 결정되고 있다. 따라서 250Hz~500Hz대역의 주파수가 사람에게 가장 민감한 반응을 일으키는 주파수로 사료된다.

(2) 공회전

공회전소음은 측정한 결과 측정거리에 따른 주파수별 소음등급의 특성은 그림 6과 같고, 이를 단일평가지수인 dB(A)와 NR급선으로 비교해 보면 그림 7, 표 2와 같다.

<table>
<thead>
<tr>
<th>평가지수</th>
<th>측정거리</th>
</tr>
</thead>
<tbody>
<tr>
<td>dB(A)</td>
<td>7m</td>
</tr>
<tr>
<td></td>
<td>15m</td>
</tr>
<tr>
<td></td>
<td>30m</td>
</tr>
</tbody>
</table>

5.1 그림 6. 공회전시 거리별 소음등급 변화 특성

그림 6에서 공회전시 주파수별 특성을 살펴보면 안전음의 영향으로 80Hz 부근에서 음향등급이 높게 나타나고 중음역 대역에서는 일정한 소음등급은 유지하나가 고음역으로 갈수록 감쇠하는 특성을 보이고 있다. 또한 공회전시 발생하는 소음은 항차소음에 비해 거리가 멀어지면 큰 감쇠를 보이지 않고 있으며, 특정 주파수 대역에서는 거의 감쇠도 크게 나타나지 않는다. 이를 그림 7과 같이 NR급선으로 평가해 보면 차음등급을 결정하는 주파수는 500Hz로 이 주파수 대역이 사람에게 가장 큰 불쾌감을 일으키는 주파수임을 알 수 있다.

4.2 국내 생활소음 규제기준과의 비교

7m, 15m, 30m지점에서 측정한 소음등급을 소음진동규제법 시행규칙 제29조의 3항(생활소음 규제기준)에 따른 항차감이 이루어지는 주간(08:00~18:00)기준과 비교해보면 표 3과 같다.

<table>
<thead>
<tr>
<th>대상 지역</th>
<th>단위 : Leq (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>7m차량</td>
<td>75</td>
</tr>
<tr>
<td>15m차량</td>
<td>80</td>
</tr>
<tr>
<td>30m차량</td>
<td>85</td>
</tr>
</tbody>
</table>

표 3에서 보면 항차소음은 대상지역 I - II의 기준을 모두 초과하는 아주 큰 소음임을 알 수 있으며, 공회전소음은 대상지역 I의 기준을 모두 상회하고 대상지역 II의 기준은 30m 이상의 거리에서만 만족하고 있다. 따라서 대부
분의 작업이 도심지인 대상지역 1에서 행해지고 있는 점을 감안하면 항차 발생하는 소음은 상당히 거리가 멀어져 있어서 인접한 주민들에게 많은 영향을 줄 것으로 사료된다.

4.3 RAM 타격위치의 변화에 따른 소음레벨의 변화

1m, 5m, 10m, 15m의 지점에서 항차 RAM의 타격위치에 따라 측정한 소음레벨의 변화특 성은 그림 8과 같고, 측정 거리에 따른 소음레벨의 표준편차는 그림 9와 같다.

![그림 8. 항차 높이에 따른 소음변화](image)

![그림 9. 거리에 따른 소음레벨 표준편차](image)

<table>
<thead>
<tr>
<th>시간대</th>
<th>대상지역</th>
<th>조식</th>
<th>추계</th>
<th>시계</th>
</tr>
</thead>
<tbody>
<tr>
<td>05:00~06:00</td>
<td>65이하</td>
<td>70이하</td>
<td>75이하</td>
<td></td>
</tr>
<tr>
<td>08:00~18:00</td>
<td>65이하</td>
<td>70이하</td>
<td>75이하</td>
<td></td>
</tr>
<tr>
<td>22:00~05:00</td>
<td>65이하</td>
<td>70이하</td>
<td>75이하</td>
<td></td>
</tr>
</tbody>
</table>

- 대상지역 1: 주거지역, 농지지역, 준도시지역 중 취락지구 및 운동 휴양지구, 자연환경보존지역, 기타 지역의 학교, 병원, 공공시설
- 대상지역 2: 기타지역

그림 8에서 보면 측정거리는 아주 가까운 거리인 1m에서는 타격위치가 높음수록 소음레벨이 높고 타격위치가 낮음수록 소음레벨이 높아지는 특성을 보이고 있으나 10m이상에서는 변화가 없음을 알 수 있다. 또한 측정된 결과의 표준편차를 살펴보면 1m에서 2.3dB(A), 5m에서
1.6dB(A)의 표준편차를 보이고 있으나, 그 이상의 거리에서는 1dB(A)이하의 적은 표준편차를 보이고 있다. 따라서 타격위치의 변화에 따른 소음레벨의 변화는 거리가 멀어질수록 적어짐을 알 수 있다.

4.4 거리에 따른 소음레벨의 예측 상관식

거리는 변화에 따른 소음레벨의 감쇠특성을 예측해 보면 그림 10과 같다.

![그림 10. 거리에 따른 소음레벨의 예측 상관식](image)

<table>
<thead>
<tr>
<th>구분</th>
<th>예측식</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>항타</td>
<td>$y=107.2x^{-0.05}$</td>
<td>0.910</td>
</tr>
<tr>
<td>공회전</td>
<td>$y=-0.176x+79.509$</td>
<td>0.9974</td>
</tr>
</tbody>
</table>

그림 11. 유압식주사공법 파형

그림에서 보면 항타시 소음은 74~96dB(A) 사이를 0.5초 단위로 변하는 극히 높고 반복적인 증감적 소음의 특성을 나타내고 있으며, 공회전시 소음은 정상소음으로써 레벨변동이 적고 대부분 일정한 소음을 나타내고 있다. 또한 시간응답의 변화를 살펴보면 그림 12와 같다.

![그림 12. 항타시 시간응답(Time Response) 변화](image)

그림에서 보면 항타시에는 진폭의 변화가 아주 급격히 일어났다가 없어지는 충격소음의 특성을 나타내고 있음을 알 수 있다.

V. 결론

본 연구를 통해 분석된 결과를 종합하여 정리하면 다음과 같다.

1. 유압식 항타시 주사수별 특성을 살펴보면 악천의 영향으로 비교적 애너지가 큰 100Hz이하의 저음역에서는 거리에 따른 감쇠가 크게
이상의 연구는 건설현장에서 기초 지정공사에 저소음·저진동 공법으로 많이 사용되는 유압식 항아공법에 의한 소음레벨 및 주파수 특성을 조사·분석하여 NR곡선으로 평가한 결과이며, 항후 소음이 문제당되는 기타 건설기계에 대한 지속적인 연구가 이루어져야 할 것으로 사료된다.
12. 동아건설산업주식회사, 현장기술지도서(건설환경관리-소음.진동), 동아건설산업주식회사 기술연구소, 1993.7
13. 太田宏, 増友昭, 建築騒音の測定と監測, 森北出版株式会社, 1983
14. 建設機械研究会, 建設機械ハインドブック, 鹿島出版, 1992
18. Z.Maekawa: Environmental and Architectural Acoustics, E&FN Spon, 1994